首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   16篇
  国内免费   3篇
  2023年   4篇
  2022年   3篇
  2021年   17篇
  2020年   12篇
  2019年   13篇
  2018年   21篇
  2017年   8篇
  2016年   22篇
  2015年   29篇
  2014年   30篇
  2013年   38篇
  2012年   44篇
  2011年   23篇
  2010年   18篇
  2009年   15篇
  2008年   22篇
  2007年   24篇
  2006年   17篇
  2005年   12篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1983年   2篇
  1978年   1篇
排序方式: 共有396条查询结果,搜索用时 8 毫秒
31.
Epigenetic dysfunction has been implicated in a growing list of disorders that include cancer, neurodevelopmental disorders, and neurodegeneration. Williams syndrome (WS) and 7q11.23 duplication syndrome (Dup7) are rare neurodevelopmental disorders with broad phenotypic spectra caused by deletion and duplication, respectively, of a 1.5-Mb region that includes several genes with a role in epigenetic regulation. We have identified striking differences in DNA methylation across the genome between blood cells from children with WS or Dup7 and blood cells from typically developing (TD) children. Notably, regions that were differentially methylated in both WS and Dup7 displayed a significant and symmetrical gene-dose-dependent effect, such that WS typically showed increased and Dup7 showed decreased DNA methylation. Differentially methylated genes were significantly enriched with genes in pathways involved in neurodevelopment, autism spectrum disorder (ASD) candidate genes, and imprinted genes. Using alignment with ENCODE data, we also found the differentially methylated regions to be enriched with CCCTC-binding factor (CTCF) binding sites. These findings suggest that gene(s) within 7q11.23 alter DNA methylation at specific sites across the genome and result in dose-dependent DNA-methylation profiles in WS and Dup7. Given the extent of DNA-methylation changes and the potential impact on CTCF binding and chromatin regulation, epigenetic mechanisms most likely contribute to the complex neurological phenotypes of WS and Dup7. Our findings highlight the importance of DNA methylation in the pathogenesis of WS and Dup7 and provide molecular mechanisms that are potentially shared by WS, Dup7, and ASD.  相似文献   
32.
Hippophae salicifolia (HS) and Hippophae rhamnoides turkestanica (HRT) are abundantly found species of Hippophae in Himalayan region of India. As these plants thrive under extreme climatic conditions, it is suspected that these plants must have a unique adaptogenic property against high-altitude stress. To keeping these views in our mind, the present study was planned to evaluate the mechanism of action of aqueous extract of HS and aqueous extract of HRT against multiple stress [cold-hypoxia-restraint (C-H-R)] for their adaptogenic activity. The present study reported the adaptogenic activity of HS in facilitating tolerance to multiple stress, CHR in rats. Pre-treatment with aqueous extract of HS significantly attenuated reactive oxygen species (ROS) production, protein oxidation, and lipid peroxidation and also showed role in maintaining antioxidant status as similar to control rats. Since protein oxidation was decreased by pre-treatment of HS, protein homeostasis was also sustained by regulation of heat shock proteins (HSP70 and HSP60). Interestingly, heme oxygenase-1 (HO-1), Vascular Endothelial Growth Factor (VEGF), and nitric oxide (NO) level was also increased in HS pre-treated rats depicted its adaptogenic activity against multiple stress, CHR. Conclusively, aqueous extract of HS could use an adaptogen for high altitude-associated multiple stress (CHR).  相似文献   
33.
An economical and efficient one step synthesis of a series of 8-(arylidene)-4-(aryl)-5,6,7,8-tetrahydro-quinazolin-2-ylamines and 9-(arylidene)-4-(aryl)-6,7,8,9-tetrahydro-5H-cycloheptapyrimidin-2-ylamines by the reaction of bis-benzylidene cycloalkanones and guanidine hydrochloride in presence of NaH has been developed. All the synthesized compounds were evaluated against Mycobacterium tuberculosis H37Rv strain and the α-glucosidase and glycogen phosphorylase enzymes. Few of the compounds have shown interesting in vitro activity with MIC up to 3.12 μg/mL against M. tuberculosis and very good inhibition of α-glucosidase and glycogen phosphorylase enzymes. The most potent non toxic compound 40 exhibited about 58% ex vivo activity at MIC of 3.12 μg/mL. The present study opens a new gate to synthesize antitubercular agents for diabetic TB patients. In silico docking studies indicate that mycobacterial dihydrofolate reductase is the possible target of these compounds.  相似文献   
34.
35.
George J  Srivastava AK  Singh R  Shukla Y 《Proteomics》2011,11(22):4411-4421
Cypermethrin, a synthetic pyrethroid insecticide is shown to exert carcinogenic effects in rodents; however, its underlying mechanism remains elusive. Here, we showed the effect of cypermethrin on protein expression involved in neoplastic transformation in mouse skin. Comparative protein expression profiles between untreated control and cypermethrin-treated mouse skin were explored using 2-DE. A total of 27 spots that were statistically significant (p<0.05) and differentially expressed in response to cypermethrin exposure were identified by MALDI-TOF/TOF and LC-MS/MS. Among them, six up-regulated proteins (carbonic anhydrase 3 (Ca 3), Hsp-27, S100A6, galectin-7, S100A9, S100A11) and one down-regulated protein (superoxide dismutase [Cu-Zn] (Sod 1)) are associated with cancer-related key processes. These selected dysregulated proteins were further validated in 2-DE gels of mouse skin treated with known tumorigens (benzo-[a]-pyrene, 12-O-tetradecanoyl-phorbol-13-acetate and mezerein), respectively. Comparative studies showed that Ca 3, S100A6, S100A9, S100A11 and Sod 1 are specific for stages of development and progression of tumors whereas Hsp-27 and galectin-7 are specific for tumor promotion stage by cypermethrin in mouse skin. Furthermore, these chosen proteins confirmed by Western blotting and immunofluorescence staining were consistent with changes in 2-DE check. This proteomic investigation for the first time provides key proteins that will contribute in understanding the mechanism behind cypermethrin-induced neoplastic transformation.  相似文献   
36.
37.
38.
Many lines of evidence implicate mitochondria in phenotypic variation: (a) rare mutations in mitochondrial proteins cause metabolic, neurological, and muscular disorders; (b) alterations in oxidative phosphorylation are characteristic of type 2 diabetes, Parkinson disease, Huntington disease, and other diseases; and (c) common missense variants in the mitochondrial genome (mtDNA) have been implicated as having been subject to natural selection for adaptation to cold climates and contributing to "energy deficiency" diseases today. To test the hypothesis that common mtDNA variation influences human physiology and disease, we identified all 144 variants with frequency >1% in Europeans from >900 publicly available European mtDNA sequences and selected 64 tagging single-nucleotide polymorphisms that efficiently capture all common variation (except the hypervariable D-loop). Next, we evaluated the complete set of common mtDNA variants for association with type 2 diabetes in a sample of 3,304 diabetics and 3,304 matched nondiabetic individuals. Association of mtDNA variants with other metabolic traits (body mass index, measures of insulin secretion and action, blood pressure, and cholesterol) was also tested in subsets of this sample. We did not find a significant association of common mtDNA variants with these metabolic phenotypes. Moreover, we failed to identify any physiological effect of alleles that were previously proposed to have been adaptive for energy metabolism in human evolution. More generally, this comprehensive association-testing framework can readily be applied to other diseases for which mitochondrial dysfunction has been implicated.  相似文献   
39.
40.
WindowMasker: window-based masker for sequenced genomes   总被引:3,自引:0,他引:3  
MOTIVATION: Matches to repetitive sequences are usually undesirable in the output of DNA database searches. Repetitive sequences need not be matched to a query, if they can be masked in the database. RepeatMasker/Maskeraid (RM), currently the most widely used software for DNA sequence masking, is slow and requires a library of repetitive template sequences, such as a manually curated RepBase library, that may not exist for newly sequenced genomes. RESULTS: We have developed a software tool called WindowMasker (WM) that identifies and masks highly repetitive DNA sequences in a genome, using only the sequence of the genome itself. WM is orders of magnitude faster than RM because WM uses a few linear-time scans of the genome sequence, rather than local alignment methods that compare each library sequence with each piece of the genome. We validate WM by comparing BLAST outputs from large sets of queries applied to two versions of the same genome, one masked by WM, and the other masked by RM. Even for genomes such as the human genome, where a good RepBase library is available, searching the database as masked with WM yields more matches that are apparently non-repetitive and fewer matches to repetitive sequences. We show that these results hold for transcribed regions as well. WM also performs well on genomes for which much of the sequence was in draft form at the time of the analysis. AVAILABILITY: WM is included in the NCBI C++ toolkit. The source code for the entire toolkit is available at ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/. Once the toolkit source is unpacked, the instructions for building WindowMasker application in the UNIX environment can be found in file src/app/winmasker/README.build. SUPPLEMENTARY INFORMATION: Supplementary data are available at ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/windowmasker/windowmasker_suppl.pdf  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号